[ Video ]
[ About ]
群れシステムで演算対象となる範囲にある点同士で線を引く
Flock system visualized friendship.
[ Source ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
#pragma once #include "ofMain.h" #include "Particle.h" class ofApp : public ofBaseApp { public: void setup(); void update(); void draw(); void keyPressed(int key) {}; void keyReleased(int key) {}; void mouseMoved(int x, int y) {}; void mouseDragged(int x, int y, int button) {}; void mousePressed(int x, int y, int button) {}; void mouseReleased(int x, int y, int button) {}; void windowResized(int w, int h) {}; void dragEvent(ofDragInfo dragInfo) {}; void gotMessage(ofMessage msg) {}; int number_of_particle; vector<unique_ptr<Particle>> particles; }; |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
#include "ofApp.h" //-------------------------------------------------------------- void ofApp::setup() { ofSetFrameRate(60); ofSetWindowTitle("openFrameworks"); ofBackground(239); ofSetColor(39); ofSetLineWidth(1.5); this->number_of_particle = 200; for (int i = 0; i < this->number_of_particle; i++) { auto particle = make_unique<Particle>(); this->particles.push_back(move(particle)); } } //-------------------------------------------------------------- void ofApp::update() { for (auto& particle : this->particles) { particle->update(this->particles); } } //-------------------------------------------------------------- void ofApp::draw() { for (auto& particle : this->particles) { particle->draw(this->particles); } } //-------------------------------------------------------------- int main() { ofSetupOpenGL(720, 720, OF_WINDOW); ofRunApp(new ofApp()); } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
#pragma once #include "ofMain.h" class Particle { public: Particle(); ~Particle(); void update(vector<unique_ptr<Particle>>& particles); void draw(vector<unique_ptr<Particle>>& particles); glm::vec2 separate(vector<unique_ptr<Particle>>& particles); glm::vec2 align(vector<unique_ptr<Particle>>& particles); glm::vec2 cohesion(vector<unique_ptr<Particle>>& particles); glm::vec2 seek(glm::vec2 target); void applyForce(glm::vec2 force); private: glm::vec2 location; glm::vec2 velocity; glm::vec2 acceleration; float range; float max_force; float max_speed; int wall; }; |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
#include "Particle.h" Particle::Particle() { this->location = glm::vec2(ofRandom(ofGetWidth()), ofRandom(ofGetHeight())); this->velocity = glm::vec2(ofRandom(-1, 1), ofRandom(-1, 1)); this->range = 40; this->max_force = 1; this->max_speed = 8; this->wall = 10; } Particle::~Particle() { } void Particle::update(vector<unique_ptr<Particle>>& particles) { // 分離 glm::vec2 separate = this->separate(particles); this->applyForce(separate); // 整列 glm::vec2 align = this->align(particles); this->applyForce(align); // 結合 glm::vec2 cohesion = this->cohesion(particles); this->applyForce(cohesion); // 自我 if (glm::length(this->velocity) > 0) { glm::vec2 future = glm::normalize(this->velocity) * this->range; future += this->location; float angle = ofRandom(360); glm::vec2 target = future + glm::vec2(this->range * 0.5 * cos(angle * DEG_TO_RAD), this->range * 0.5 * sin(angle * DEG_TO_RAD)); glm::vec2 ego = this->seek(target); this->applyForce(ego); } // 境界 glm::vec2 correction; if (this->location.x < this->wall) { correction += glm::vec2(max_speed, this->velocity.y); } else if (this->location.x > ofGetWidth() - this->wall) { correction += glm::vec2(-max_speed, this->velocity.y); } if (this->location.y < this->wall) { correction += glm::vec2(this->velocity.x, max_speed); } else if (this->location.y > ofGetHeight() - this->wall) { correction += glm::vec2(this->velocity.x, -max_speed); } if (glm::length(correction) > this->max_force) { correction = glm::normalize(correction) * this->max_force; } this->applyForce(correction); // 前進 this->velocity += this->acceleration; if (glm::length(this->velocity) > this->max_speed) { this->velocity = glm::normalize(this->velocity) * this->max_speed; } this->location += this->velocity; this->acceleration *= 0; this->velocity *= 0.9; } void Particle::draw(vector<unique_ptr<Particle>>& particles) { for (auto& other : particles) { glm::vec2 difference = this->location - other->location; float len = glm::length(difference); if (len > 0 && len < this->range) { ofDrawLine(this->location, other->location); } } ofDrawCircle(this->location, 5); } glm::vec2 Particle::separate(vector<unique_ptr<Particle>>& particles) { float tmp_range = this->range * 0.5; glm::vec2 result; glm::vec2 sum; int count = 0; for (auto& other : particles) { glm::vec2 difference = this->location - other->location; float len = glm::length(difference); if (len > 0 && len < tmp_range) { sum += glm::normalize(difference); count++; } } if (count > 0) { glm::vec2 avg = sum / count; avg = avg * this->max_speed; if (glm::length(avg) > this->max_speed) { avg = glm::normalize(avg) * this->max_speed; } glm::vec2 steer = avg - this->velocity; if (glm::length(steer) > this->max_force) { steer = glm::normalize(steer) * this->max_force; } result = steer; } return result; } glm::vec2 Particle::align(vector<unique_ptr<Particle>>& particles) { float tmp_range = this->range; glm::vec2 result; glm::vec2 sum; int count = 0; for (auto& other : particles) { glm::vec2 difference = this->location - other->location; float len = glm::length(difference); if (len > 0 && len < tmp_range) { sum += other->velocity; count++; } } if (count > 0) { glm::vec2 avg = sum / count; avg = avg * this->max_speed; if (glm::length(avg) > this->max_speed) { avg = glm::normalize(avg) * this->max_speed; } glm::vec2 steer = avg - this->velocity; if (glm::length(steer) > this->max_force) { steer = glm::normalize(steer) * this->max_force; } result = steer; } return result; } glm::vec2 Particle::cohesion(vector<unique_ptr<Particle>>& particles) { float tmp_range = this->range * 0.5; glm::vec2 result; glm::vec2 sum; int count = 0; for (auto& other : particles) { glm::vec2 difference = this->location - other->location; float len = glm::length(difference); if (len > 0 && len < tmp_range) { sum += other->location; count++; } } if (count > 0) { result = this->seek(sum / count); } return result; } glm::vec2 Particle::seek(glm::vec2 target) { glm::vec2 desired = target - this->location; float distance = glm::length(desired); desired = glm::normalize(desired); desired *= distance < this->range ? ofMap(distance, 0, this->range, 0, this->max_speed) : max_speed; glm::vec2 steer = desired - this->velocity; if (glm::length(steer) > this->max_force) { steer = glm::normalize(steer) * this->max_force; } return steer; } void Particle::applyForce(glm::vec2 force) { this->acceleration += force; } |